Abstract

The membrane potential and contractile activity of colonic circular smooth muscle from New Zealand White rabbits were studied after the production of acute experimental colitis. Colitis was induced in the distal colon by rectal infusion of formaldehyde solution, followed by an intravenous bolus of soluble immune complexes. Despite active mucosal inflammation, there are only occasional inflammatory cells in the muscularis. Electrophysiological studies on tissue from control rabbits and rabbits with colitis were performed using double sucrose gap and intracellular microelectrode techniques. The resting membrane potential was lower (-44 +/- 3 mV) in muscle from rabbits with colitis compared with control animals (-54 +/- 2 mV) (P less than 0.02). Amplitude of the electrotonic potential after a hyperpolarizing current pulse was decreased (P less than 0.05) and the time constant was shortened (P less than 0.01) in muscle from animals with colitis compared with normal animals. Amplitude (13.1 +/- 2.3 mV) and maximum rate of rise (0.24 +/- 0.06 V/s) of the spike potential, initiated by a depolarizing current pulse, were decreased in muscle from animals with colitis compared with muscle from healthy animals (P less than 0.001). Isometric tension generation after electrical and chemical depolarization of the membrane or bethanechol administration was decreased (P less than 0.001) in muscle from colitic animals. These studies suggest 1) membrane resistance and membrane potential are decreased in muscle strips from animals with colitis; and 2) there is a disturbance in the electrical and mechanical response of these tissues after stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.