Abstract

The effect of alloy composition on hydrogen activity was measured for seven titanium alloys as a means to determine the tendency for hydrogen migration within dissimilar metal welds. The alloys were: Ti-CP, Ti-3A1-2.5V, Ti-3Al-2.5V-3Zr, Ti-3Al-2Nb-lTa, Ti-6A1, Ti-6A1-4V, and Ti-6Al-2Nb-lTa-0.8Mo. Hydrogen pressure-hydrogen concentration relationships were determined for temperatures from 600 ‡C to 800 ‡C and hydrogen concentrations up to approximately 3.5 at. pct (750 wppm). Fusion welds were made between Ti-CP and Ti-CP and between Ti-CP and Ti-6A1-4V to observe directly the hydrogen redistribution in similar and dissimilar metal couples. Hydrogen activity was found to be significantly affected by alloying elements, particularly Al in solid solution. At a constant Al content and temperature, an increase in the volume fraction ofΒ reduced the activity of hydrogen in α-@#@ Β alloys. Activity was also found to be strongly affected by temperature. The effect of temperature differences on hydrogen activity was much greater than the effects resulting from alloy composition differences at a given temperature. Thus, hydrogen redistribution should be expected within similar metal couples subjected to extreme temperature gradients, such as those peculiar to fusion welding. Significant hydrogen redistribution in dissimilar alloy weldments also can be expected for many of the compositions in this study. Hydride formation stemming from these driving forces was observed in the dissimilar couple fusion welds. In addition, a basis for estimating hydrogen migration in titanium welds, based on hydrogen activity data, is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call