Abstract

BackgroundLung cancer is the most common cause of cancer-related deaths. Tobacco smoke exposure is the strongest aetiological factor associated with lung cancer. In this study, using serial analysis of gene expression (SAGE), we comprehensively examined the effect of active smoking by comparing the transcriptomes of clinical specimens obtained from current, former and never smokers, and identified genes showing both reversible and irreversible expression changes upon smoking cessation.ResultsTwenty-four SAGE profiles of the bronchial epithelium of eight current, twelve former and four never smokers were generated and analyzed. In total, 3,111,471 SAGE tags representing over 110 thousand potentially unique transcripts were generated, comprising the largest human SAGE study to date. We identified 1,733 constitutively expressed genes in current, former and never smoker transcriptomes. We have also identified both reversible and irreversible gene expression changes upon cessation of smoking; reversible changes were frequently associated with either xenobiotic metabolism, nucleotide metabolism or mucus secretion. Increased expression of TFF3, CABYR, and ENTPD8 were found to be reversible upon smoking cessation. Expression of GSK3B, which regulates COX2 expression, was irreversibly decreased. MUC5AC expression was only partially reversed. Validation of select genes was performed using quantitative RT-PCR on a secondary cohort of nine current smokers, seven former smokers and six never smokers.ConclusionExpression levels of some of the genes related to tobacco smoking return to levels similar to never smokers upon cessation of smoking, while expression of others appears to be permanently altered despite prolonged smoking cessation. These irreversible changes may account for the persistent lung cancer risk despite smoking cessation.

Highlights

  • Lung cancer is the most common cause of cancer-related deaths

  • Raw serial analysis of gene expression (SAGE) data for these transcriptomes has been made publicly available at National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) with series accession number GSE5473

  • APEX nuclease 1 (APEX1), High-mobility group box 1 (HMGB1), REV1-like (REV1L), and Tumor suppressor candidate 4 (TUSC4) are repair genes which we have found to be irreversibly under-expressed in ever smokers

Read more

Summary

Introduction

Lung cancer is the most common cause of cancer-related deaths. Tobacco smoke exposure is the strongest aetiological factor associated with lung cancer. Lung cancer has the highest mortality rate among all types of malignancies, accounting for approximately 29% of all cancer-related deaths in the United States [1]. It has been estimated that in 2006 alone, the number of new lung cancer cases will exceed 174,000 and approximately (page number not for citation purposes). Tobacco smoking accounts for 85% of the lung cancers. Former heavy smokers remain at an elevated risk for developing lung cancer even years after they stop smoking [2,3]. Fifty percent of newly diagnosed lung cancer patients are former smokers [4]. It is important to understand the effects of tobacco smoking on the bronchial epithelium in both active and former smokers

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call