Abstract

ABSTRACTThe effect of phase separation of the donor-acceptor (DA) blend on the dominant recombination mechanism in polymer-fullerene [(poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM)] based bulk heterojunction (BHJ) cells has been investigated. Coarse (70-150 nm) and fine (20-25 nm) phase separated blends and corresponding devices were prepared using chlorobenzene (CB) and ortho-dichlorobenzene (1,2-DCB) as spin casting solvents respectively. Nanoscale mobility measurements indicated highly unbalanced charge transport in coarse morphology based (CB cast) devices. Linear dependence of short circuit current (Jsc) vs. light intensity (I) suggested first order monomolecular (MR) recombination in the fine phase separated devices (1,2-DCB cast) whereas sub-linearity suggested dominant role of bimolecular (BR) recombination in coarse phase separated devices (CB cast). Improved device efficiency of 1,2-DCB based devices (η ≈ 2.54 %) compared to CB (η ≈ 0.9 %) may be attributed to reduced BR recombination as a result of finer phase separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.