Abstract

In the current study, the performance characteristics of symmetric super-capacitor (SC) utilizing activated carbon electrodes have been analyzed in an aqueous 1M potassium hydroxide (KOH) solution implemented as the electrolyte. Activated carbon (AC) is derived from Chitosan (CS), which possesses remarkable biodegradable characteristics via the chemical activation method at N <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> atmosphere conditions using ZnCl2 as activating agent. To evaluate how CS performs at various activation temperatures of 500, 600, and 700°C, the experiment was conducted. The effect on activation temperature here on porous properties of prepared AC was investigated systematically, using surface area and pore size analysis. Additional morphological properties of synthesized AC were analyzed using the techniques of scanning electron microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDX). Symmetric super-capacitor electrodes were fabricated, and their performance was analyzed in a two-electrode system applying standard electrochemical characterization methods using the potentiostat. Moreover, the electrochemical analysis of the CS-based materials has been studied utilizing cyclic voltammetry (CV) and cyclic charge-discharge (CCD) approaches. It was found that the super-capacitor electrode employing chitosan exhibits higher performance enhancement in the super capacitive characteristic of CS seems linked to the porous structure and pseudocapacitive mechanism of charge-storage, as compared to the super-capacitor cell using various biodegradable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call