Abstract

AbstractWe report here the morphology, thermal and tensile properties of poly(lactic acid) (PLA) blends composed of acrylonitrile butadiene rubber (NBR) with different acrylonitrile contents with/without dynamic vulcanization by dicumyl peroxide (DCP). The interfacial tension of PLA and NBR measured by contact angle measurement decreased as the acrylonitrile content of NBR decreased. Likewise, SEM images showed that the rubber particle size reduced with decreasing acrylonitrile content owing to the stronger interfacial adhesion between the PLA matrix and NBR domains. Incorporation of DCP at 1.0 phr for dynamic vulcanization led to higher crosslink density and, in turn, optimal tensile strength and tensile toughness as a result of the action of PLA‐NBR copolymer as a reactive compatibilizer. The dynamic vulcanization of the blends containing low acrylonitrile NBR gave the most improved tensile properties because the free radicals from DCP decomposition preferentially attacked the allylic hydrogen atoms or double bonds of the butadiene backbone. Accordingly, more NBR macroradicals were generated and probably more PLA‐NBR copolymers were produced. Moreover, further addition of DCP at 2.0 phr provided a large amount of crosslinked NBR gel, which significantly degraded the tensile properties. From the DSC results, dynamic vulcanization lowered the cold crystallization temperature, implying an improvement of cold crystallization. Finally, TGA results showed a higher degradation temperature as a function of DCP content, which suggested that thermal stability increased due to stronger interfacial adhesion as well as higher gel content. © 2019 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call