Abstract

Molecules of muscle aldolase A exposed to acrylamide change their conformation via I 1, T, I 2, D intermediates [1] and undergo a slow irreversible chemical modification of thiol groups. There is no direct correlation between activity loss and thiol groups modification. In the native enzyme two classes of Trp residues of 1.8 ns and 4.9 ns fluorescence lifetime have been found. Acrylamide (0.2–0.5 M) increases lifetime of longer-lived component, yet the transfer of aldolase molecules even from higher (1.0 M) perturbant concentration to a buffer, allows regain original Trp fluorescence lifetime. I 1, detected at about 0.2 M acrylamide, represents low populated tetramers of preserved enzyme activity. T, of maximum population at about 0.7–1.0 M acrylamide, consists of meta-stable tetramers of partial enzymatic activity. These molecules are able to exchange their subunits with aldolase C in opposition to the native molecules. At transition point for I 2 appearance (1.8 M acrylamide), aldolase becomes highly unstable: part of molecules dissociate into subunits which in the absence of perturbant are able to reassociate into active tetramers, the remaining part undergoes irreversible denaturation and aggregation. Some expansion of aldolase tetramers takes place prior to dissociation. D, observed above 3.0 M acrylamide, consists of irreversibly denatured enzyme molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.