Abstract

Harman and norharman were the most abundant β-carboline-type heterocyclic amines (HCAs) detected in various foodstuffs. Unsaturated fatty acids in foods may undergo rapid oxidative deterioration during transportation, storage and heat treatment, forming reactive carbonyl species (RCS). This work studied the effects of acrolein, a highly reactive RCS, on the formation of harman and norharman in the tryptophan model system. Results showed that 0.005, 0.01, 0.015, 0.02, 0.05, 0.1 and 0.2 mmol of acrolein led to harman production increased by 528 %, 752 %, 981 %, 1172 %, 1375 %, 1288 % and 768 % respectively, and led to norharman formation increased by 116 %, 129 %, 152 %, 169 %, and 197 %, 185 % and 157 %, respectively. Furthermore, acrolein addition reduced the residue of tryptophan (up to 63.19 %), but increased the level of the intermediates including formaldehyde (up to 352 %), acetaldehyde (up to 491 %), (1S,3S)-1-Methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (MTCA, up to 1936 %), and 1,2,3,4-tetrahydro-β-carboline-3-carboxylicacid (THCA, up to 2142 %) in the tryptophan model system. Acrolein might react with tryptophan, harman and norharman to eliminate them directly. These data suggested that acrolein may contribute to harman and norharman formation through participating in the above complex chemical reactions. In addition, the content of harman and norharman produced in roast beef patties made of minced beef oxidized for 2, 4, 6, 8, and 10 days increased by 118 %, 188 %, 267 %, 137 %, and 48 %, respectively, and led to norharman formation increased by 140 %, 132 %, 90 %, 86 %, and 74 %, respectively compared with those made of fresh minced beef, which further illustrated that lipid oxidation products potentially contributed to harman and norharman formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.