Abstract

This study demonstrates that the cladding modes of a tilted superstructure fiber grating can be coupled back to the core mode to create induced channels by acousto-optic interactions when the acoustic wave traveling along the fiber axis vibrates the fiber. This phenomenon is based on the acoustic wave vector matching the difference between the core mode and the cladding mode wave vector. Acoustic power levels can be used to control the reflectivity and number of the induced wavelength channels. Moreover, the wavelength location of the induced channel can be tuned by varying the acoustic wave frequency. Thus, the proposed device may provide a switchable multiwavelength comb filter for applications in wavelength-division multiplexing systems, fiber lasers, or fiber sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.