Abstract

Anthropogenic acidification has deleterious effects on both structure and functioning of surface water ecosystems. This study examined how it may affect the leaf decomposition rate and the community structure and activity of decomposers in both benthic and hyporheic zones of five headwater streams along an acidification gradient from highly acidic (pH 4.6) to circumneutral (pH 7.4). Overall, responses to acidification in hyporheic zones were less pronounced, but followed the same pattern as in their benthic counterparts. Leaf decomposition was much faster in the circumneutral stream, both in the hyporheic and benthic zones (k = 0.0068 and 0.0534 d−1, respectively), than in the most acidic one (k = 0.0016 and 0.0055 d−1, respectively), and correlated well with the acidic gradient in both compartments. Interestingly, leaf litter decomposition was less affected by acidification in hyporheic compared to benthic compartments, likely due to the relatively low sensitivity of fungi, which were the main decomposers of buried coarse particulate organic matter. These results argue in favour of conserving hyporheic habitats in acidified streams as they can maintain matter and species fluxes that are essential to the ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.