Abstract

Introduction:The aim of this study was to investigate the microhardness and microstructural features of newer tricalcium silicate materials: TheraCal LC, mineral trioxide aggregate (MTA), biodentine (BD), and Endosequence Root Repair Material (ERRM) putty, after exposure to acidic environments in comparison with distilled water.Materials and Methods:A total of 80 extracted single-rooted premolars were collected. All the selected specimens were sectioned vertically, and cavities were prepared on the root surface. Specimens were divided into four groups of 20 each, i.e., Group 1: (n = 15) MTA (ProRoot, Dentsply Tulsa Dental, Tulsa, OK, USA), Group 2: (n = 15) BD (Septodont, France), Group 3: (n = 15) ERRM putty (Brasseler, USA), and Group 4: (n = 15) TheraCal LC (Bisco Inc Schaumburg). Materials were placed into prepared cavities. About 10 specimens per each group were exposed to butyric acid buffered at a pH level of 5.5 for 7 days at 37c, and 10 specimens from each group were exposed to distilled water serving as a control group. The surface microhardness was measured after exposure to either acid or distilled water. Scanning electron microscope was used to observe the internal microstructure morphology. Two-way analysis of variance was applied to evaluate the Knoop microhardness value (KHN).Results:Results showed that the microhardness values of the materials were significantly higher in the neutral environment of butyric acid at pH 7.4 when compared to those in the acidic condition of pH 5.4 for all groups (P < 0.001). TheraCal LC had higher microhardness values than BD, MTA, ERRM putty at 5.5 pH levels (P < 0.001).Conclusion:The microhardness values of TheraCal LC, BD, ERRM Putty, and MTA were reduced in an acidic environment, which resulted in these materials having more porous and less crystalline microstructures. TheraCal LC seems the most suitable material for application to an area of inflammation where a low pH value may exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.