Abstract

The objective of this research was to analyze the effect of different concentrations of nitric and hydrochloric acids on the structural, acidic, and catalytic properties of a post-synthetic treated ZSM-5 type zeolite at various temperatures. The properties of zeolite catalysts were determined using different methods, such as the Brunauer-Emmett-Teller (BET) method for specific surface area, temperature-programmed desorption (TPD) of ammonia method for acidic properties, and a flow-through unit with fixed bed catalyst (with upgrading straight-run gasoline fraction of oil) for catalytic activities of initial zeolite and acid-treated samples. The structural and acidic properties of both untreated and treated zeolites were investigated, and the effect of acid treatment on the catalytic properties of the samples in the course of upgrading the straight-run gasoline fraction of oil was determined. The post-synthetic treatment with aqueous nitric acid increased the specific surface area and volume of micropores of ZSM-5 zeolite, while the treatment with aqueous hydrochloric acid led to the formation of mesopores. Acid treatments of zeolite decreased the number of acid sites, mainly due to diminished concentration of low-temperature sites. The yield of liquid products in the conversion of straight-run gasoline fraction of oil, i.e., generation of high-octane gasolines with improved environmental features, was increased using acid-treated zeolites, which was due to the decrease in arene content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call