Abstract

A high load of inorganics in raw lignocellulosic biomass is known to inhibit the yield of bio-oil and alter the chemical reactions during fast pyrolysis of biomass. In this study, palm kernel shell (PKS), an agricultural residue from palm oil production, and two other woody biomass samples (mahogany (MAH) sawdust and iroko (IRO) sawdust) were pretreated with distilled water or an acidic solution (either acetic, formic, hydrochloric (HCl) or sulfuric acid (H2SO4)) before fast pyrolysis in order to investigate its effect on the primary products and pyrolysis reaction pathways. The raw and pretreated PKS, MAH and IRO were pyrolysed at 600 °C and 5 s with a micro-pyrolyser connected to a gas chromatograph–mass spectrometer/flame ionisation detector (GC-MS/FID). Of the leaching solutions, HCl was the most effective in removing inorganics from the biomass and enhancing the primary pyrolysis product formed compared to the organic acids (acetic and formic acid). The production of levoglucosan was greatly improved for all pretreated biomasses when compared to the original biomass but especially after HCl pretreatment. Additionally, the relative content of the saccharides was maximised after pretreatment with H2SO4, which was due to the increased production of levoglucosenone. The relative content of the saccharides increased by over 70%. This increase may have occurred due to a possible reaction catalysed by the remaining acid in the biomass. The production of furans, especially furfural, was increased for all pretreatments but most noticeable when H2SO4 was used. However, the relative content of acids and ketones was generally reduced for PKS, MAH and IRO across all leaching solutions. The relative content of the phenol-type compound decreased to a large extent during pyrolysis after acid pretreatment, which may be attributed to dehydration and demethoxylation reactions. This study shows that the production of valuable chemicals could be promoted by pretreatment with different acid solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call