Abstract

Effects of acetylcholine and of the cholinergic precursors choline, cytidine 5'-diphosphocholine (CDP-choline) and alpha-glyceryl-phosphorylcholine (alpha-GPC) on transglutaminase (TG) and cyclin D1 expression were studied in primary astrocyte cultures by confocal laser microscopy (CLSM) with monodansyl-cadaverine uptake as a marker of enzyme activity and by immunochemistry (Western blotting). CLSM analysis showed an increased cytofluorescence in 0.1 microM choline-treated astrocytes. Treatment with CDP-choline dose-dependently increased TG. A total of 1 microM CDP-choline exposure in 14 days in vitro (DIV) astrocyte cultures increased cytofluorescence. A total of 1 microM alpha-GPC 24 h-treated cultures revealed increased cytofluorescence both in cytosol and nuclei. Western blot analysis showed an increased TG expression in cultures exposed for 24 h to 1 microM choline or alpha-GPC, whereas in 24 h 1 microM CDP-choline and acetylcholine-treated astrocytes TG expression was unaffected. Treatment with 1 microM acetylcholine reduced TG expression at 21 DIV. In cultures at 14 and 35 DIV cholinergic precursor treatment for 24 h induced a marked down-regulation of cyclin D1 expression, with reduced cyclin D1 expression in 1 microM alpha-GPC treated astrocytes. Our data suggest a role of cholinergic precursors investigated independent from acetylcholine on maturation and differentiation of astroglial cells in vitro, rather than on their growth, proliferation and development in culture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call