Abstract

The supercritical water gasification of xylose, a model substrate for hemicellulose, was carried out at 400 and 450 °C and at a constant pressure of 25 MPa in the presence of acetic acid using a continuous flow reactor. More specifically, we aimed to compare the reaction rate constants of xylose decomposition in both the presence and absence of acetic acid. Upon the application of a residence time of 0.5–5 s, a xylose concentration of 1.5 wt %, and an acetic acid concentration of 1.5 wt %, we successfully elucidated the effect of acetic acid on each reaction within the reaction network for the first time. In the presence of acetic acid, the retro-aldol reactions and carbon gasification production (i.e., the radical reactions) were suppressed, while the acetic-acid-catalyzed dehydration of xylulose to furfural (i.e., an ionic reaction) was enhanced by 2 orders of magnitude. As such, reaction control through the addition of chemical species to either stabilize ions or react with radicals appears possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call