Abstract
Acetaldehyde inhibited the oxidation of fatty acids by rat liver mitochondria as assayed by oxygen consumption and CO 2 production. ADP-stimulated oxygen uptake was more sensitive to inhibition by acetaldehyde than was uncoupler-stimulated oxygen uptake, suggesting an effect of acetaldehyde on the electron transport-phosphorylation system. This conclusion is supported by the decrease in the respiratory control ratio, associated with fatty acid oxidation. Acetaldehyde depressed ketone body production as well as the content of acetyl CoA during palmitoyl-1-carnitine oxidation. Acetaldehyde was considerably more inhibitory toward fatty acid oxidation than was acetate. Therefore, the inhibition by acetaldehyde is not mediated by acetate, the direct product of acetaldehyde oxidation by the mitochondria. Oxygen uptake was depressed by acetaldehyde to a slightly, but consistently, greater extent in the absence of fluorocitrate, than in its presence. This suggests inhibition of oxygen consumption from β-oxidation to acetyl CoA and that which arises from citric acid cycle activity. The inhibition of fatty acid oxidation is not due to any effect on the activation or translocation of fatty acids into the mitochondria. The depression of the end products of fatty acid oxidation (CO 2, ketones, acetyl CoA) as well as the greater sensitivity of palmitate oxidation compared to acetate oxidation, suggests inhibition by acetaldehyde of β-oxidation, citric acid cycle activity, and the respiratory-phosphorylation chain. Neither the activities of palmitoyl CoA synthetase nor carnitine palmitoyltransferase appear to be rate limiting for fatty acid oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.