Abstract

According to Bloom's Taxonomy, the motto of education is to groom the students' as a better personality in knowledge, skill set and emotions under the supervision of academicians. Development of information technology paves the way to analyse the data from the educational environment and make decisions which help to be in track to achieve the motto. i.e. Educational Data mining. Education Data mining is one of the research domains of data mining which convert the data from the educational sector as insights for decision making. This paper is to analyse the effect of student's academic interest on emotional happiness and academic performance by applying supervised and unsupervised learning techniques. Students' Emotional Happiness and students' academic performance is evaluated by the Oxford Happiness Inventory and criterion reference model. Academic interest is received as yes or no responses from the students. Naive Bayes classification algorithm and K Means clustering algorithm is applied to categorise the student participants based on their happiness scale, academic interest and academic performance. The association between academic interest and performance is determined using predictive and descriptive mining. By this research, it is witnessed the positive association between academic interest, happiness and performance. The insights of this investigation will allow the teachers' to understand the students in a better way and do the needful to enhance academic efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.