Abstract

Copper (Cu) nanoparticles of average sizes (radius in nm) varying between 1.7 and 6 nm have been prepared by 1,064 nm Nd:YAG laser ablation of solid copper target in water medium. The nanostructures of the samples have been characterized using high-resolution transmission electron microscopes (HRTEM). The UV–visible absorption spectra obtained with a UV–visible spectrophotometer show sharp absorptions in the ultraviolet region and visible region due to the interband transition and surface plasmon resonance (SPR) oscillations in Cu nanoparticles, respectively. The increase in the linewidth of the SPR absorption peaks with the reduction in particle sizes are observed due to the intrinsic size effects. The behaviour of the UV–visible spectra associated with the Cu nanoparticles is studied as a function of laser fluence and laser ablation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.