Abstract

Molybdenum trioxide (MoO3) is a well-known electrochromic material. In the present work, n-type α-MoO3 thin films with both direct and indirect band gaps were fabricated by varying the laser repetition (ablation) rate in a pulsed laser deposition (PLD) system at a constant reactive O2 pressure. The electrochromic properties of the films are compared and correlated to the microstructure and molecular-level coordination. Mixed amorphous and textured crystallites evolve at the microstructural level. At the molecular level, using NMR and EPR, we show that the change in the repetition rate results in a variation of the molybdenum coordination with oxygen: at low repetition rates (2 Hz), the larger the octahedral coordination, and greater the texture, whereas at 10 Hz, tetrahedral coordination is significant. The anion vacancies also introduce a large density of defect states into the band gap, as evidenced by XPS studies of the valence band and supported by DFT calculations. The electrochromic contrast improved remarkably by almost 100% at higher repetition rates whereas the switching speed decreased by almost 6-fold. Although the electrochromic contrast and coloration efficiency were better at higher repetition rates, the switching speed, reversibility, and stability were better at low repetition rates. This difference in the electrochromic properties of the two MoO3 films is attributed to the variation in the defect and molecular coordination states of the Mo cation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call