Abstract

In order to understand the mechanisms underlying stress responses, meta-analysis of transcriptome is made to identify differentially expressed genes (DEGs) and their biological, molecular and cellular mechanisms in response to stressors. The present study is aimed at identifying the effect of abiotic and biotic stress factors, and it is found that several stress responsive genes are common for both abiotic and biotic stress factors in zebrafish. The meta-analysis of micro-array studies revealed that almost 4.7% i.e., 108 common DEGs are differentially regulated between abiotic and biotic stresses. This shows that there is a global coordination and fine-tuning of gene regulation in response to these two types of challenges. We also performed dimension reduction methods, principal component analysis, and partial least squares discriminant analysis which are able to segregate abiotic and biotic stresses into separate entities. The supervised machine learning model, recursive-support vector machine, could classify abiotic and biotic stresses with 100% accuracy using a subset of DEGs. Beside these methods, the random forests decision tree model classified five out of 8 stress conditions with high accuracy. Finally, Functional enrichment analysis revealed the different gene ontology terms, transcription factors and miRNAs factors in the regulation of stress responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.