Abstract

Abstract The effect of using a variable eddy transfer coefficient for the Gent–McWilliams (GM) parameterization in a (1/3)°-resolution ocean model of the subpolar North Atlantic Ocean is investigated. Results from four experiments with different implementations of this coefficient are compared among themselves as well as with two control experiments. A series of improvements have been obtained in all of the experiments that use a low level of explicit horizontal tracer diffusion. These include a better representation of the overflow waters originating from the Nordic seas, leading to a more realistic deep western boundary current and to increased eddy activity in the deep ocean in the eastern North Atlantic. In the same experiments, the GM velocities “help” the Labrador Sea Water to spread from the deep convection region to the currents that surround it without incurring significant spurious diapycnal mixing. Thus, two classical pathways for the spreading of this water are established. Moreover, the simulated Labrador Current and the near-surface circulation in the eastern North Atlantic are in better agreement with flow patterns inferred from observations. The increased release of available potential energy obtained in the experiments with variable eddy transfer coefficients is responsible for the simulation of a flow that varies less in time. An overly strong countercurrent still occurs in the Labrador Sea in these experiments, and it has a negative impact on the pathway of the North Atlantic Current in the “Northwest Corner” and on the hydrography of the Labrador Sea. Nonetheless and overall, the use of the variable eddy transfer coefficient has led to better representations of the general circulation and hydrography in the subpolar North Atlantic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.