Abstract

The present study investigates the effect of the substitution of salicylaldehyde hydrazones at two selected positions, i.e., the para-position with regard to the proton-donating and proton-accepting centers forming the hydrogen bridge. A detailed analysis of structural data obtained by theoretical approaches and X-ray experiments, together with original resonance Hammett's constants, indicates that the strength of the intramolecular hydrogen bonding present in salicylaldehyde hydrazones can be selectively modulated by substitution of the parent molecular system with the chemical group of known π-electron-donating or -accepting properties. Our findings provide an insight into planning synthesis pathways for salicylaldehyde hydrazone species and predicting their result with regard to their H-bonding and related physical and chemical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.