Abstract

The present experiment sought to determine the effect of an eight-week, high antioxidant, whole-foods dietary supplement on Morris Water Maze performance in early and late middle-aged female rats. To improve ecological validity over past experimental studies, rats in the current study received antioxidants by consuming freeze-dried organic strawberries and spinach rather than by being given food extracts or antioxidant injections. Latency and path length measures both indicated that late middle-aged rats fed the high antioxidant diet performed on a par with the younger animals earlier in training than their standard diet counterparts (p < 0.05). Superior performance was not due to improved fitness in the antioxidant-supplemented rats. Thus, our model showed that a high antioxidant diet of relatively short duration mitigated the mild cognitive decline that was seen in control animals during the developmental period of late middle-age. The current results offer support for the promising role of dietary antioxidants in maintaining cognitive health in normal aging and extend past findings to females, who have been relatively neglected in experimental investigations. Moreover, the current model suggests that the period of transition from early to late middle age is a promising target for dietary intervention in healthy adults.

Highlights

  • As advances in medicine, along with other factors, continue to increase human longevity [1] (p. 10), scientists are increasingly concerned with understanding disease-related changes in cognitive and affective functioning that increase with advancing age, and in changes attributable to normal aging processes

  • Mitochondrial Free Radical Theory of Aging (MFRTA) states that the aging process, and death, results in part from the accumulation of mitochondrial damage caused by free radicals, which are cells that have lost a critical

  • Any improvement in learning and memory functioning conferred by the diet should be more clearly expressed on day 2. These results demonstrate the ability of an eight-week, whole foods HAD to preserve the learning curve in aging female rats to match that of younger rats on a hippocampal-dependent learning and memory task

Read more

Summary

Introduction

Along with other factors, continue to increase human longevity [1] (p. 10), scientists are increasingly concerned with understanding disease-related changes in cognitive and affective functioning that increase with advancing age, and in changes attributable to normal aging processes. The exact age of onset of decline is debatable. Methodological variables, such as, in the case of human experiments, whether the design was cross-sectional or longitudinal and whether practice effects were controlled for [3], as well as contextual factors, such as goals and motivation [6], may account for the divergent estimates produced by experimental research. Numerous physiological processes likely contribute to cognitive decline in aging mammals, a general theory of aging first proposed by Harman in 1956, and later updated in 1972, The Mitochondrial Free Radical Theory of Aging (MFRTA), generated much empirical work in the area [7,8]. MFRTA states that the aging process, and death, results in part from the accumulation of mitochondrial damage caused by free radicals, which are cells that have lost a critical

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.