Abstract

A-site off-stoichiometry has been an efficient method to enhance the electromechanical properties of lead-free Na0.5Bi0.5TiO3(NBT)-based piezoceramics. In this work, we have reported the effect of Na/Bi off-stoichiometry on the microstructural, structural, and electromechanical properties of the tetragonal 0.80Na0.5Bi0.5TiO3–0.20BaTiO3 (NBT–20BT) ceramic. The maximum piezoresponse ~ 115 pC/N is obtained for 4 mol% Na-deficient (20BT–Na46) and 2 mol% Bi-excess (20BT–Bi52) compositions. It is a 25% increment over the piezoresponse of the stoichiometric composition (20BT–Na50 ~ 90 pC/N). The enhancement in piezoresponse has been attributed to an optimized presence of polar-structural heterogeneity/disorder in the poled ceramic matrix and an optimized distortion of the long-range tetragonal ferroelectric phase. It is established that A-site off-stoichiometry is influencing the polar-structural heterogeneity/disorder and tetragonal lattice distortion via the grain size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call