Abstract

In this paper, we use a single nanoparticle (NP) to achieve active control of the droplet contact line. When the droplet is out of equilibrium, the resulting excess free energy provides the driving force for the depinning of the contact line and the NP. There are three ways to increase the energy barriers to be surmounted and to realize the pinning of the contact line, namely, the enhancement of the interactions between the NP and the substrate, the increase in substrate hydrophilicity, and the reduction in the NP hydrophilicity. On this basis, we obtained three styles of contact line motion including complete slipping, alternate pinning-depinning, and complete pinning and theoretically interpreted them. The basic theory presented in this paper can be applied to explain and regulate the dynamics of the contact line involved in many physical processes such as evaporation and spreading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.