Abstract

The effect of a-SiCxNy:H encapsulation layers, which are prepared using the very-high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique with SiH4, CH4, and NH3 as the precursors, on the stability and photoluminescence of CsPbBr3 quantum dots (QDs) were investigated in this study. The results show that a-SiCxNy:H encapsulation layers containing a high N content of approximately 50% cause severe PL degradation of CsPbBr3 QDs. However, by reducing the N content in the a-SiCxNy:H layer, the PL degradation of CsPbBr3 QDs can be significantly minimized. As the N content decreases from around 50% to 26%, the dominant phase in the a-SiCxNy:H layer changes from SiNx to SiCxNy. This transition preserves the inherent PL characteristics of CsPbBr3 QDs, while also providing them with long-term stability when exposed to air, high temperatures (205 °C), and UV illumination for over 600 days. This method provided an effective and practical approach to enhance the stability and PL characteristics of CsPbBr3 QD thin films, thus holding potential for future developments in optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.