Abstract
Powder samples of Bi2S3 and Ag-doped Bi2S3 compounds were successfully synthesized via the solvothermal method. The synthesized powders were consolidated using the cold-press method and annealed at 300 °C for 3 h. The cross-sections of the consolidated samples exhibited a densely packed hierarchical architecture micro-flower-like morphology. The effect of Ag doping on the thermoelectric properties of the samples was systematically studied. The results showed that Ag doping had considerable effects on the morphology, leading to grain boundary scattering and point defects. The addition of 0.025% Ag led to an 81% enhancement in electrical conductivity (σ) at 550 K. However, a reduction in the Seebeck coefficient (S) was observed, and the power factor (S 2 σ) was enhanced. Owing to the scattering of all-scale phonons caused by the hierarchical architecture, a low thermal conductivity of 0.407 W m-1 K-1 at 483 K was obtained, which is one of the low values among the reported Bi2S3 materials. The maximum zT was obtained as 0.06 at 543 K for the 0.025% Ag-doped Bi2S3 sample.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.