Abstract

BackgroundColonoscopes are designed with balance between flexibility, required to negotiate angulations, and stiffness, required to counteract the propensity for looping in unfixed sections of the colon, which retards advancement of the instrument. Colonoscopy can be challenging with old instruments that have lost native stiffness and become less responsive to torquing.A new intraluminal stiffening device has become available in two grades of stiffness. However, there is no published evidence of its effectiveness. This randomized, controlled trial was designed to determine the effectiveness of the stiffening wires in improving cecal intubation rate and time following routine application. A secondary analysis determines effectiveness of application only after intractable failure with the unaided colonoscope.MethodsThe colonoscope tested was an Olympus CF-100TL, approximately fifteen years old. Patients were randomly assigned to the unaided colonoscope or the standard or firm wire introduced routinely on entry into transverse colon. Each phase of colonoscopy was timed. Failure to advance the colonoscope for 5 minutes (despite usual manipulations to minimize looping) required switching to another intervention according to a prescribed methodology and the originally assigned intervention was recorded as failed.ResultsThe study was terminated after accrual of 112 participants (target sample size 480) because the colonoscope required repairs (no damage attributable to stiffening wires) which would have been uneconomical. There were no statistically significant differences between per-protocol cecal intubation rates (81.1, 71.1 and 70.3 percent respectively), a finding which persisted after multiple imputation for a virtual sample size of 480. Similarly, there were no statistically significant differences between per-protocol cecal intubation times (15, 16.2 and 13.9 minutes). However, a statistically significant improvement in cecal intubation rate (from 81.1% to 97.3%, P = 0.0313) was achieved when the wires were applied after intractable failure of the unaided colonoscope in the first intervention group.ConclusionsRoutine application of either stiffening wire does not improve caecal intubation rate nor time compared to the unaided colonoscope. However, application of the stiffening wires after intractable failure of the unaided colonoscope enabled a statistically significant improvement in cecal intubation rate.Trial Registrationclinicaltrials.gov Identifier: NCT01115010

Highlights

  • Colonoscopes are designed with balance between flexibility, required to negotiate angulations, and stiffness, required to counteract the propensity for looping in unfixed sections of the colon, which retards advancement of the instrument

  • Routine application of either stiffening wire does not improve caecal intubation rate nor time compared to the unaided colonoscope

  • Both native stiffness and responsiveness to torquing decrease in colonoscopes that have been in use for a long time [4,5] and this can be restored by replacing the insertion tube, that would increase the cost of used colonoscopes significantly

Read more

Summary

Introduction

Colonoscopes are designed with balance between flexibility, required to negotiate angulations, and stiffness, required to counteract the propensity for looping in unfixed sections of the colon, which retards advancement of the instrument. Colonoscopes are designed with a delicate balance between flexibility, required to negotiate angulations, and stiffness, required to resist the tendency for looping to occur in the unfixed sections of the colon, a phenomenon which retards advancement of the instrument [1,2]. An increase over the native stiffness of traditional, fixedstiffness colonoscopes is achieved by torquing the shaft or application of a stiffening device [3,4]. Colonoscopy with used, excessively flexible instruments can be challenging [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call