Abstract

In this work we study the effect of heat shocks of various durations up to 60 min, at different temperatures between 35 and 45 °C, in media of pH 4.0, 5.5 and 7.4 on the heat resistance of Listeria monocytogenes and Pseudomonas aeruginosa. The pattern of survival curves after heat treatment did not change with the application of a previous heat shock. However, the kinetics of inactivation was different for the two microorganisms studied. Whereas the inactivation of L. monocytogenes was similar to an exponential function of heating time and therefore straight survival curves were obtained, survival curves corresponding to P. aeruginosa showed convex profiles. All survival curves obtained in this investigation were fitted to Weibull-based Mafart equation: log 10 S( t) = − ( t / δ) p . The magnitude of the heat shock induced thermotolerance increased with treatment medium pH. At pH 7.4 the increase in heat tolerance depended on the duration and temperature of the heat shock. On the contrary, at pH 5.5 and pH 4.0, the heat-shock temperature did not exert any effect. The observed maximum δ values increased 2.3, 4.0 and 9.3 fold for L. monocytogenes, and 1.3, 2.1 and 8.4 fold for P. aeruginosa, at pH 4.0, 5.5 and 7.4, respectively. This research has proven that Mafart equation allows studying and quantifying the effect of heat shocks on bacterial heat resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call