Abstract

Background:Pigmentary skin disorders impair the quality of life, leading to the development of therapeutic modalities. However, these treatments should focus more on effectiveness and safety.Aims and Objectives:To evaluate the effect of a temperature-adjustable cryotherapy device on the expression of pigmentation-related biomarkers.Methods and Results:A temperature- and time-adjustable cryotherapy device was employed to improve 200 mJ UVB-induced pigmentation on mice at −5°C (for 5, 10 or 20 s), 0°C (for 5, 10 or 20 s), 5°C (for 5, 10 or 20 s), or 10°C (for 5, 10 or 20 s). Expression of pigmentation-related biomarkers, such as tyrosinase, c-kit, melanocortin 1 receptor and microphthalmia-associated transcription factor before and after treatment with the cryotherapy device was investigated with real-time polymerase chain reaction and immunohistochemistry.Results:Expression of pigmentation-related biomarkers was decreased after the treatment of the temperature-adjustable cryotherapy device. Gene expression of the pigmentation-related biomarkers was decreased under the above conditions with some exception. Protein expression of the pigmentation-related biomarkers showed decreased tendency under the conditions with some exceptions.Conclusion:The temperature-adjustable cryotherapy device used in this study reduced the expression of pigmentation-related biomarkers on mice and may be used to treat patients with skin pigmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.