Abstract

Strategies to increase non-exercise activity thermogenesis (NEAT) through promotion of movement and energy expenditure at desk stations are needed to help overcome ill effects of prolonged sitting. Examine the metabolic rate during three stages of a workstation: sitting, standing, and use of a device (HOVR®) that promotes leg movement while seated. Participants (n = 16; mean ±standard deviation: age 26.1±6.0 years; BMI 24.7±4.3 kg/m2) were tested for VO2 and VCO2 for 15 min at each stage in this order: sitting only, sitting using the HOVR, and standing. Participants performed the same desk work to keep fine-motor activity consistent for the stages. Data collected during the final 5 min of a stage were averaged and analyzed as steady-state data. To evaluate the effect of each stage on cognitive function, the Stroop word-color test was administered after metabolic assessment as the stage continued. One-way ANOVA with repeated measures was used to compare stages for VO2 (L/min), metabolic equivalents (METs), respiratory exchange ratio (RER), and heart rate (p < 0.05). The ANOVA revealed significant differences between the mean values for each stage for each dependent variable (p < 0.05). Post hoc tests indicated VO2 differed for each stage (mean±SD in mL/kg/min: sitting, 4.13±0.56; sitting with HOVR, 4.82±0.74; standing, 4.50±0.53; p < 0.05). METs followed a similar pattern (sitting, 1.19±0.16; sitting with HOVR, 1.39±0.20; standing, 1.29±0.16; p < 0.05). An increase in Stroop Test scores was found as the stages progressed (p < 0.05). Modest movement while seated, i.e., use of HOVR, elevated metabolic rate by 17.6% compared to sitting and by 7% compared to standing and might be a reasonable strategy to help elevate NEAT during the workday.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call