Abstract

Ηypercholesterolemia/hyperlipidemia in conjunction with oxidative stress and inflammatory processes contribute synergistically to the pathogenesis of atherosclerosis. We hereby evaluated the antiatherosclerotic effect of the multi-target derivative 4-methyl-2-(10H-phenothiazin-3-yl)morpholin-2-ol hydrobromide 1 in apoE−/− mice; compound 1 is a potent antihyperlipidemic agent acting through Squalene Synthase inhibition, while it has exhibited an outstanding antioxidant and anti-inflammatory activity in various experimental animal models. The new analogue was evaluated in terms of its antiatherosclerotic/antioxidant effect in the ApoE−/− transgenic mouse model. Its toxicity profile was also assessed by measuring the levels of four sensitive indicators of liver toxicity. Prolonged administration of 1 in ApoE−/− mice fed with a western-type (wt) diet efficiently reduced the aortic atheromatic lesions, an effect that took place through a cholesterol lowering independent manner. In addition, 1 displayed a significant reduction not only of glucose but also of oxidative stress levels, while it did not cause any toxicity. To the best of our knowledge this is the first time that the antiatherosclerotic effect of a Squalene Synthase inhibitor is studied in this specific atherosclerosis mouse model. As a result, compound 1 may serve as a promising starting point towards developing new bioactive analogues against the onset and subsequent development of atherosclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.