Abstract

The present study aimed to introduce a new carbon dots nanocarrier (Zn-NCDs) as a slow-release Zn fertilizer. Zn-NCDs was synthesized using a hydrothermal method and characterized by instrumental methods. A greenhouse experiment was then conducted involving two Zn sources (Zn-NCDs and ZnSO4), three concentrations of Zn-NCDs (2, 4, and 8 mg/L), and under sand culture conditions. This study comprehensively evaluated the effects of Zn-NCDs on the zinc, nitrogen, and phytic acid content, biomass, growth indices, and yield in bread wheat (cv. Sirvan). Also, a fluorescence microscope was used to examine the in vivo transport route of Zn-NCDs in wheat organs. Finally, the availability of Zn in soil samples treated with Zn-NCDs was evaluated over 30 days in an incubation experiment. The findings indicated that Zn-NCDs as a slow-release fertilizer increased root-shoot biomass, fertile spikelet, and grain yield by 20, 44, 16, and 43%, respectively, compared to ZnSO4 treatment. The concentration of zinc and nitrogen in the grain was increased by 19% and 118%, respectively, while phytic acid was decreased by 18% than ZnSO4 treatment. Microscopic observations revealed that wheat plants could absorb and transfer Zn-NCDs from roots to stems and leaves through vascular bundles. This study demonstrated for the first time that Zn-NCDs could be used as a slow-release Zn fertilizer with high efficiency and low cost in wheat enrichment. In addition, Zn-NCDs could be applied as a new nano fertilizer and technology for in vivo plant imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call