Abstract

Two bacterial strains, Pseudomonas aeruginosa K1 and Rhodococcus equi P1, were used to degrade cyclo-alkanes (such as decalin) by a co-oxidation mechanism. Both strains possessed the capacity to degrade a broad range of n-alkane mixtures (C7 to C28) within 24 h of incubation. Strain P1 rapidly degraded 10 gl-1 pristane within 24 h of incubation (mu = 0.36 h-1 and Yx/s = 0.6). The addition of hexadecane as a growth substrate (above 0.5%, v/v) resulted in complete degradation of 1% (v/v) decalin by strain P1 via a co-oxidation mechanism. Co-oxidation to degrade decalin or pristane by strain K1 proved unsuccessful. Strain P1 was able to degrade decalin totally in a saturated hydrocarbon mixture. Strain K1 was only able to degrade hexadecane from the hydrocarbon mixture, but its degradation rate was higher than that of strain P1. Therefore, there was competition for the hexadecane needed to co-oxidize decalin. As a result, degradation of the hydrocarbon mixture, especially decalin, was incomplete in a mixed culture of strain P1 and K1. Serial addition of hexadecane (twice) allowed complete degradation of the remaining decalin by strain P1. Also, the biodegradation rate of the hydrocarbon mixture by a microbial population from gasoline-contaminated soil was delayed by addition of strain K1 to the population, while the addition of strain P1 resulted in an increase in the biodegradation rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call