Abstract
To improve the welding quality of resistance spot welding joints of steel/aluminum lightweight structures, the steady magnetic field-assisted resistance spot welding method was used to weld 444 ferritic stainless steel and 6082 aluminum alloy, both with a thickness of 1 mm. Under the same welding parameters, the effect of a magnetic field on the microstructure and mechanical properties of the joint was analyzed. It was found that the Lorentz force generated by the addition of a magnetic field promoted the circumferential movement of the molten metal in the nugget zone, increased the size of the Fe/Al contact interface in the joint along the horizontal direction, and made an effective use of the heat generated during resistance spot welding. Although the intermetallic compounds in the intermediate transition layer of the two welded materials were mainly composed of (Fe, Cr, Si)Al2 and (Fe, Cr, Si)Al3, relatively low contents of (Fe, Cr, Si)Al2 and (Fe, Cr, Si)Al3 were found and a there was a significant decrease in the thickness of the intermetallic compound layer when the magnetic field was applied. Compared with the welded joint devoid of a magnetic field, the tensile strength and ductility of the joint were effectively improved, and the dimples in the fracture surface became relatively deep and numerous. In essence, resistance spot welding joints of steel/aluminum obtain better comprehensive mechanical properties when a magnetic field is applied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.