Abstract

The effect of a magnetic field on single-bubble sonoluminescence in water reported experimentally by Young, Schmiedel, and Kang [Phys. Rev. Lett. 77, 4816 (1996)] is studied theoretically. It is suggested that bubble dynamics is affected by the magnetic field because moving water molecules of the liquid suffer torque due to the Lorentz force acting on their electrical dipole moment, which results in the transformation of some of the kinetic energy into heat. It is shown that the magnetic field acts as if the ambient pressure of the liquid were increased. It is suggested that the effect increases as the amount of the liquid water increases. It is predicted that nonpolar liquid such as dodecane exhibits no effect of the magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.