Abstract

We investigate a reaction-diffusion model in which a Turing pattern develops and reproduces the formation of periodic segments behind a propagating chemical wave front. The chemical scheme involves two species known as activator and inhibitor. The model can be used to mimic the formation of prevertebrae during the early development of vertebrate embryo. Deterministic and stochastic analyses of the reaction-diffusion processes are performed for two typical sets of parameter values, far from and close to the Turing bifurcation. The effects of a local source or sink of inhibitor on the growing structure are studied and successfully compared with experiments performed on chick embryos. We show that fluctuations may lead to the formation of additional prevertebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.