Abstract

Low-viscosity micellar aqueous solutions of cetyltrimethylammonium bromide (CTAB) undergo a major change in the presence of the hydrotrope, potassium 1-phenylmethylsulfate (KPhMS), producing a highly viscoelastic entanglement network of polymer-like micelles. The system studied here shows typical shear banding flow behavior, which tends to disappear with increasing the hydrotrope-to-surfactant concentration ratio (C H / C S). The linear rheological response was analyzed with the model of Granek–Cates, whereas the nonlinear behavior was reproduced with the Bautista–Manero–Puig (BMP) model. Both models introduce a kinetic equation to account for the breaking and reformation of the micelles, and they predict the linear and nonlinear rheological data very well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.