Abstract

BackgroundCentral sensitization is modulated by the endogenous opioid system and plays a major role in the development and maintenance of pain. Recent animal studies performed following resolution of inflammatory pain showed reinstatement of tactile hypersensitivity induced by administration of a mu-opioid-antagonist, suggesting latent sensitization is mediated by endogenous opioids. In a recent crossover study in healthy volunteers, following resolution of a first-degree burn, 4 out of 12 volunteers developed large secondary areas of hyperalgesia areas after a naloxone infusion, while no volunteer developed significant secondary hyperalgesia after the placebo infusion. In order to consistently demonstrate latent sensitization in humans, a pain model inducing deep tissue inflammation, as used in animal studies, might be necessary. The aim of the present study is to examine whether a high-dose target-controlled naloxone infusion can reinstate pain and hyperalgesia following recovery from open groin hernia repair and thus consistently demonstrate opioid-mediated latent sensitization in humans.Methods/DesignPatients submitted to unilateral, primary, open groin hernia repair will be included in this randomized, placebo-controlled, double-blind, crossover study. The experimental days take place 6–8 weeks after surgery, time-points at which patients are expected to be almost pain- free. Prior to administration of naloxone or placebo, the primary outcome (a summated measure of pain: at rest, during transition from supine to standing position, and evoked by pressure algometry) and the secondary outcomes (secondary hyperalgesia/allodynia, pressure pain thresholds, assessed at the surgical site and at the mirror-site in the contralateral groin, and, opioid withdrawal symptoms) will be assessed. These assessments will be repeated at each step of the target-controlled infusion of placebo or naloxone at estimated median (95 % CI) plasma concentrations of 344 ng/ml (130;567), 1059 ng/ml (400;1752) and 3196 ng/ml (1205;5276).DiscussionWe aim to demonstrate opioid-mediated latent sensitization in a post-surgical setting, using pain as a clinical relevant variable. Impairment of the protective endogenous opioid system may play an important role in the transition from acute to chronic pain. In order to sufficiently block the endogenous opioid system, a high-dose target-controlled naloxone-infusion is used, in accordance with recent findings in animal studies.Trial registration numberEUDRACT: 2015-000793-36 (Registration date: 16 February 2015)Clinicaltrials.gov: NCT01992146 (Registration date: 12 December 2014)

Highlights

  • Central sensitization is modulated by the endogenous opioid system and plays a major role in the development and maintenance of pain

  • Impairment of the protective endogenous opioid system may play an important role in the transition from acute to chronic pain

  • Recent animal studies performed after resolution of inflammatory pain showed reinstatement of tactile hypersensitivity following administration of MOR-antagonists, suggesting latent sensitization mediated by endogenous opioids [6, 7], serving as a protective mechanism [15,16,17]

Read more

Summary

Introduction

Central sensitization is modulated by the endogenous opioid system and plays a major role in the development and maintenance of pain. Recent animal studies performed following resolution of inflammatory pain showed reinstatement of tactile hypersensitivity induced by administration of a mu-opioid-antagonist, suggesting latent sensitization is mediated by endogenous opioids. Central sensitization is a condition in which the central nervous system is regulated into a state of high reactivity producing augmented responses It plays a major role in the development and maintenance of pain [1, 2] and is modulated by the endogenous opioid system, which is known to be impaired or altered in various chronic pain conditions [2,3,4]. Translational research is needed to study the phenomenon of latent sensitization and its modulation by the endogenous opioid system in humans

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.