Abstract
Multilayers of a Nb0.37Ti0.63 alloy, a chief material of superconducting magnet technology, and a Cu0.95Sn0.05 or Cu0.70Ni0.30 alloy exhibit a dimensional crossover with a decreasing bilayer period Λ=dN+dS, where dS=3dN. Cusps of Hc2(θ) and square root Hc2∥(T) develop when Λ⩽40 nm, which indicate a crossover to 2D behavior from 3D behavior seen at Λ=60 nm. Full proximity coupling of Cu–Sn layers for Λ=13 nm restores isotropic angular dependence, but with sharply lower Hc2 values. By contrast, proximity coupling was suppressed by magnetic Cu–Ni layers, and 2D behavior was retained while Tc fell below 4 K for Λ<20 nm. The data are consistent with numeric results obtained by Takahashi and Tachiki [Phys. Rev. B 33, 4620 (1986)] when the variation of the Bardeen–Cooper–Schrieffer pairing potential is the primary cause of the dimensional crossover. Since practical Nb–Ti conductors have a layered nanostructure, this result suggests that a dimensional crossover should also be found in wires. However, the 3D–2D crossover occurs when Λ is much greater than the separation of the flux lines at high field (10–20 nm) and above the range where optimum flux pinning is found. This implies that a 2D state (for insulating or magnetic layers) or a 2D strongly coupled state (for normal metals) exists when flux pinning is strongest. These implications are discussed in the context of practical Nb–Ti wires used in superconducting magnet technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.