Abstract
The vestibulo-ocular reflex (VOR) functions to maintain eye stability during head movement, and VOR gain can be dynamically increased or decreased by gain-up or gain-down adaptation. In this study, we investigated the impact of a differential training paradigm with varying frequencies and amplitudes on the level of VOR adaptation in mice. Training for gain-up (out of phase) or gain-down (in phase) VOR adaptation was applied for 60min using two protocols: (1) oscillation of a drum and turntable with fixed frequency and differing amplitudes (0.5Hz/2.5°, 0.5Hz/5° and 0.5Hz/10°). (2) Oscillation of a drum and turntable with fixed amplitude and a differing frequency (0.25Hz/5°, 0.5Hz/5° and 1Hz/5°). VOR adaptation occurred distinctively in gain-up and gain-down learning. In gain-up VOR adaptation, the learned increase in VOR gain was greatest when trained with the same frequency and amplitude as the test stimulation, and VOR gain decreased after gain-up training with too high a frequency or amplitude. In gain-down VOR adaptation, the decrease in VOR gain increased as the training frequency or amplitude increased. These results suggest that different mechanisms are, at least in part, involved in gain-up and gain-down VOR adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.