Abstract

To clarify the Tsushima Warm Current (TWC) system around a downstream region of Noto Peninsula (NP) where Toyama Trough (TT) causes a discontinuity of the along shelf-current, numerical experiments were performed using two-layered ocean model with simplified bottom topography. When a current trapped by the continental slope representing an offshore branch of TWC (OB) encounters the NP and TT, the OB was trapped by the coast facing the TT. A clockwise lee-eddy developed between a current axis and a coastline over the TT, which results in a current path transition offshore (CPT). The OB finally adjusted to a current path which crosses TT by shifting from the discontinuity point of the continental slope. If a coastal current representing a coastal branch of the TWC (CB) developed under this situation, the CB also formed lee-eddy within the identical region of the OB’s eddy, resulting in CPT. Period for the CPT of the CB was shorter with increase of the OB volume transport. These results indicate that the OB acted to accelerate CPT of the CB within the TT. To support these results, observational data comprising mooring current, tidal, and CTD measurements obtained in and around the TT, along with the output from high-resolution data-assimilated ocean model DR_C were analyzed. Although the lee-eddy of the CBs was generated in every summer, the CPT events did not fully develop when the OB was absent over the continental slope because of the slow growth rate of the lee-eddy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.