Abstract

The effect of a corona discharge on the structure and photoluminescence properties of nanocomposites based on polypropylene (PP) and zirconia is studied. It is shown that polarization under the action of a corona discharge leads to a refinement of the structural elements and an increase in the photoluminescence intensity and the increase depends on the charge concentration. The amount of charges accumulated at the interface between the nanocomposite components is determined by the thermostimulated depolarization (TSD) method; it is found that, during polarization, a large number of electric charges accumulate at the interface between the PP and ZrO2 nanocomposite components. It is revealed that the interfacial charges generate a fairly high internal local field, which excites luminescence centers in the zirconia and, thereby, leads to an increase in the luminescence intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call