Abstract

An equilibrium statistical-thermodynamic model for the effect of volume exclusion arising from high concentrations of stable macromolecules upon the stability of a trace globular protein with respect to denaturation by heat and by chaotropes is presented. The stable cosolute and the native form of the trace protein are modeled by effective hard spherical particles. The denatured state of the trace protein is represented as an ensemble of substates modeled by random coils having the same contour length but different rms end-to-end distances (i.e., different degrees of compaction). The excess or nonideal chemical potential of the native state and of each denatured substate is calculated as a function of the concentration of stable cosolute, leading to an estimate of the relative abundance of each state and substate, and the ensemble average free energy of the transition between native and denatured protein. The effect of the addition of stable cosolute upon the temperature of half-denaturation and upon the concentration of chaotrope required to half-denature the tracer at constant temperature is then estimated. At high cosolute concentration (>100 g/l) these effects are predicted to be large and readily measurable experimentally, provided that an experimental system exhibiting a fully reversible unfolding equilibrium at high total macromolecular concentration can be developed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.