Abstract

The bile salt export pump (BSEP) is the primary canalicular transporter responsible for the secretion of bile acids from hepatocytes into bile canaliculi, and inhibition of this transporter has been associated with drug-induced liver injury (DILI). A common variant (rs2287622; p.V444A) in the gene encoding BSEP has been associated with an increased risk of cholestatic DILI. Although p.444V BSEP (reference) and p.444A BSEP (variant) do not differ in their transport kinetics of taurocholic acid (TCA), transport of the more abundant glycocholic acid (GCA) has not been investigated. Importantly, differences in the susceptibility of p.444V and p.444A BSEP to inhibition by drugs causing cholestatic DILI have not been investigated. To address these issues, the transport kinetics of GCA were evaluated by incubating membrane vesicles expressing either p.444V or p.444A BSEP with GCA over a range of concentrations (1, 10, 25, 50, and 100 μM). The abilities of commonly used cholestatic medications to inhibit the transport of TCA and GCA by the reference and variant proteins were compared. Resulting data indicated that GCA transport kinetics for reference and variant BSEP followed Michaelis-Menten kinetics and were not statistically different [ Vmax values of 1132 ± 246 and 959 ± 256 pmol min-1 (mg of protein)-1, respectively, and Km values of 32.7 ± 18.2 and 45.7 ± 25.5 μM, respectively]. There were no statistically significant differences between the reference and variant BSEP in the inhibition of TCA or GCA transport by the cholestatic drugs tested. In conclusion, differential inhibition of TCA or GCA transport cannot account for an association between the variant BSEP and the risk for cholestatic DILI due to the drugs tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call