Abstract

Hyperglycemia occurs in patients with poorly controlled diabetes mellitus and contributes to bone resorption and increased susceptibility to bacterial infections. Hyperglycemia can incite low-grade inflammation that can contribute to the resorption of bone, especially the periodontal bone. The increased susceptibility to periodontal infections can contribute to bone resorption through the activation of osteoclasts. In this study, the osteoblastic, clonal cell line, MC3T3-E1, was used in an in vitro model of hyperglycemia and lipopolysaccharide-induced reactive oxygen species generation to determine the potential anti-inflammatory effect of 635 nm light-emitting diode (LED) irradiation or whether 635 nm LED irradiation can be a potential anti-inflammatory treatment. LED irradiation of MC3T3-E1 cells stimulated with lipopolysaccharide in a high glucose-containing medium decreased the level of cyclooxygenase gene and protein expression and reduced the level of prostaglandin E2 expression by decreasing the amount of reactive oxygen species generation. LED irradiation also inhibited the osteoclastogenesis in MC3T3-E1 cells by regulating the receptor activator of nuclear factor kappa-B ligand and osteoprotegerin. These findings reveal the mechanisms which are important in the pathogenesis of diabetic periodontitis and highlight the beneficial effects of 635 nm LED irradiation in reducing the adverse effects of diabetic periodontitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.