Abstract

Cronobacter sakazakii is an opportunistic pathogen that can survive extreme desiccation, heat, acid, and osmotic stress. This can increase the risk of infection, resulting in severe diseases, mainly in neonates. The inactivation effect of 405 ± 5-nm light-emitting diode (LED) illumination on C. sakazakii with different initial concentrations and C. sakazakii strains isolated from powdered infant formula (PIF) and baby rice cereal (BRC) were firstly evaluated. Then, the effect of 405 ± 5-nm LED on the tolerance of diverse environmental conditions of C. sakazakii in PIF was investigated. Conditions involving desiccation [PIF, Water activity (aw): 0.2–0.5], heat (45, 50, and 55 °C), acid (simulated gastric fluid: SGF, pH 4.75 ± 0.25), and bile salt (0.2%, bile salt solution) were used to study the effects of 405-nm LED on C. sakazakii resistance. The transcription levels of ten tolerance-associated genes and changes in bacterial cell membrane were examined to understand the response of C. sakazakii to LED illumination. The results showed that 405-nm LED effectively inactivated C. sakazakii ATCC 29544 with initial concentration from 8 to 1 log CFU/g in PIF and strains isolated from PIF and BRC. Moreover, 405-nm LED could decrease the tolerance of C. sakazakii in PIF to desiccation, heat treatment at 50 and 55 °C, SGF, and bile salt to different degrees, but the resistance to the heat treatment at 45 °C was not influenced by LED illumination. In addition, the transcription levels of the ten tolerance-associated genes measured in the LED-illuminated C. sakazakii cells were significantly downregulated compared with those in unilluminated controls. The damage on cell membrane was confirmed for LED-treated cells by LIVE/DEAD® assay. These results indicate that 405-nm LED illumination may be effective at reducing the environmental resistance of C. sakazakii in PIF. Furthermore, this study suggests the potential for applying 405-nm LED technology in the prevention and control of pathogens in food processing, production, and storage environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call