Abstract

High-intensity narrow-spectrum (HINS) 405-nm light is a novel technology developed to address the significant problem of health-care associated infection. Its potential for wound-decontamination applications is assessed on mammalian cells and bacteria. The fibroblast-populated collagen lattice (FPCL) is used as an in vitro model of wound healing, and the effect of HINS light on contraction is examined. Effects on cell proliferation, morphological changes, and α-smooth muscle actin (α-SMA) expression are investigated. Bactericidal effects are assessed using the bacterium Staphylococcus epidermidis. Low doses of HINS light were found to have no significant inhibitory effects on FPCL contraction, cell proliferation, or α-SMA expression. Doses of up to 18 Jcm(-2) had no significant inhibitory effects on FPCL cell numbers, and this dose was shown to cause almost complete inactivation of bacteria. These results show that HINS light has potential for disinfection applications without adversely influencing wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.