Abstract

The aim of the study was the detection of TRP, kynurenine (KYN), and kynurenic acid (KYNA) in human sweat, and determining whether physical activity affects their content in this secrete. Two different methods were used simultaneously—collection of sweat by means of an absorption pad from the inter scapular region, and collection of a drop of sweat from the region of the forehead. Quantitative determinations of TRP, KYN and KYNA were performed using high performance liquid chromatography with ultraviolet and fluorescence detection. Determinations of sodium was carried out by the method of inductively coupled plasma collision/reaction cell ionization mass spectrophotometry. It was found that physical exercises evoked a decrease in the amount of KYN, and an increase in the amount of KYNA in sweat recorded on day 14, but not on day 28 of training. It appears that physical exercises result in a long-term increase in the kynurenine transaminase activity responsible for the formation of KYNA from KYN. Based on this results, it can be suggested that measurement of TRP, KYN and KYNA in sweat may have diagnostic potential and may help to establish an exercise regime appropriate for the age, gender and health status of rehabilitation patients.

Highlights

  • The aim of the study was the detection of TRP, kynurenine (KYN), and kynurenic acid (KYNA) in human sweat, and determining whether physical activity affects their content in this secrete

  • The study shows for the first time that metabolites of the kynurenine pathway, KYN, and KYNA, are present in human sweat

  • TRP was found in human sweat, its existence in this secretion was recently announced in a metabolomic study by Cui et al.[35]

Read more

Summary

Introduction

The aim of the study was the detection of TRP, kynurenine (KYN), and kynurenic acid (KYNA) in human sweat, and determining whether physical activity affects their content in this secrete. It was found that physical exercises evoked a decrease in the amount of KYN, and an increase in the amount of KYNA in sweat recorded on day 14, but not on day 28 of training. It appears that physical exercises result in a long-term increase in the kynurenine transaminase activity responsible for the formation of KYNA from KYN. Subsequent bioactive metabolites formed along kynurenine pathway are 3-hydroxyantranilic acid, quinolinic acid and nicotinamide adenine d­ inucleotide[2]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.