Abstract

The oxidation of linoleic acid by soybean lipoxygenase-1 (LOX-1) was inhibited in a time-dependent manner by 4-hydroxy-2(E)-nonenal (HNE). Kinetic analysis indicated the effect was due to slow-binding inhibition conforming to an affinity labeling mechanism-based inhibition. After 25 min of preincubation of LOX-1 with and without HNE, Lineweaver-Burk reciprocal plots indicated mixed noncompetitive/competitive inhibition. Low concentrations of HNE influenced the electron paramagnetic resonance (EPR) signal of 13(S)-hydroperoxy-9(Z), 11 (E)-octadecadienoic acid (13-HPODE)-generated Fe3+-LOX-1 slightly, but higher concentrations completely eliminated the EPR signal indicating an active site hindered from access by 13-HPODE. HNE may compete for the active site of LOX-1 because its precursor, 4-hydroperoxy-(2E)-nonenal, is a product of LOX-1 oxidation of (3Z)-nonenal. Also, it was an attractive hypothesis to suggest that HNE may disrupt the active site by forming a Michael adduct with one or more of the three histidines that ligate the iron active site of LOX-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.